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Digital computation--i.e., the coherent concatenation of logical if/then state- 
ments--is generally mapped onto the temporal transformation of a physical 
state. In the alternative paradigm of steady, simultaneous quantum computa- 
tion, logical concatenations are mapped onto the transformations of a quantum 
steady state into itself. Such transformations, separated from the time variable 
and thus freed from the one-way progression of time, can map circular logical 
concatenations. This gives rise to nondeterministic and nonrecursive computa- 
tion. Toy model Hamiltonians of elementary (steady) computations are given to 
exemplify the applicability of the paradigm. 

1. I N T R O D U C T I O N  

We shall review the paradigm of steady simultaneous computation 
(Castagnoli, 1991; Castagnoli et al., 1992) from a point of view which 
better highlights the importance of separating time from computation in 
the quantum framework. 

In time-sequential computation, the state characterizing the process at 
a given time obviously cannot be influenced by its states at later times: in 
other words, as computation propagates from input to output, it cannot 
happen that the gate output contributes to the causal determination of the 
input of the same gate: computational feedback, or circular computation, is 
forbidden. 3 

IElsag Bailey, 16154 Genoa, Italy. 
2Dipartimento di Fisica, Politecnico, 10129 Turin, Italy. 
~One should notice that in time-sequential reversible computation, input is a function of the 
output (the input/output function is reversible), but this does not imply, of course, that 
output causes the input. 
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We shall show that such a limitation is removed in the quantum 
framework when the computational process is separable from time, namely 
it can be mapped onto the transformations of a steady state into itself. 
Computation, seen as the mutual logical conditioning between gate input 
and/or output states, is mapped onto the branches and loops of an abstract 
network which represents the internal causality correlations (mutual and 
simultaneous) of the structure of a quantum steady state. This generates 
circular, and hence nondeterministic and nonrecursive, computation. Be- 
fore describing in any detail such a model, it appears useful to review the 
basic notions concerning nondeterministic and nonrecursive computation, 
as well as time-sequential quantum computation. 

There are classes of problems whose solution requires an amount of 
time or computer resources which grows exponentially with some measure 
of the problem size. Roughly, nondeterministic computation implies solv- 
ing in polynomial time any problem of any of such classes. Whether or 
not Turing machines are capable of performing nondeterministic computa- 
tion is a well-known open problem. Time-sequential quantum computa- 
tion has--due to the fluctuations of computation t ime--the capability of 
overcoming the power of Turing machines (Deutsch, 1985; Brasher et al., 
1991), but computation time is the same as in Turing machines on average. 
Thus even though time-sequential quantum computation can provide some 
"nonclassical" advantage in competitive situations, such capability can be 
considered marginal. 

We argue that the time-sequential paradigm may not be well suited to 
the exploitation of quantum laws. Apropos  of this latter observation, one 
should recall Feynman's (1986) criticism of time-sequential quantum com- 
putation: sequentiality is a logical, not a physical requirement, (time-se- 
quential) quantum computation does not make much use of the specific 
qualities of the differential equations of quantum mechanics. 

The notion of nonrecursivity is easily introduced in the framework of 
positive integer functions. By definition, nonrecursive functions are func- 
tions which are well defined (e.g., in second-order arithmetics), but are not 
Turing computable. While the Church thesis asserts that implementing 
nonrecursive computation is not possible, Penrose (1989) conjectures that 
there are physical situations, well defined in terms of physical laws, which 
are not Turing computable (see also Deutsch, 1985; Pour-El and Richards, 
1983; Kreisel, 1974; Baez, 1983; Geroch and Hartle, 1986; among others). 

2. REVIEWING THE NOTION OF STEADY, 
SIMULTANEOUS COMPUTATION 

It is necessary to see first how some basic concepts inherent to the 
paradigm of classical computation transform themselves in the new 
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paradigm. We shall introduce a definition of computation which holds in 
both paradigms: 

�9 A computation process is the transformation of a physical state 
which maps the logical mathematical definition of  an object into a 
physical state which maps the object of  the definition, and is an 
observable from a physical standpoint. 

For example, in classical computation, the initial state of a Turing 
machine implicitly defines the result, or the output of computation. Run- 
ning the program provides the required transformation of the initial state 
into the output state, where the object of the definition is an observable. 

It is useful to see the input-output  transformation as a sequence of 
elementary transformations performed by logical gates (Fig. 1). Any gate is 
characterized by a finite set of  conditional statements: if input = ~t, then 
output = Or,, where l ranges over all the possible input values and m is a 
function of l. 

We shall consider sequential computation first [here gates are assumed 
to be reversible in the "conventional" fashion; see Bennett (1982) and 
Toffoli (1982)]. Its implementation requires the mapping of a chain of  
input/output values (if/then statements) onto the transformation undergone 
by a physical state under a temporal causal process (induced, e.g., by a 
suitable Hamiltonian). 

However, we can think of mapping logical transformations onto other 
kinds of physical transformations, in particular onto a steady-state symme- 
try. By this we mean the transformation of a steady state vector--where 
the time variable has been separated--into itself (see Fig. 2). Notice that 
such a steady state would play both the roles of initial and final state of 
conventional computation, and therefore it should be interpretable both as 
definition of the object and as object of the definition, as required. In the 
sequel we will check that such a condition is verified. 

i npu t  

]W (t)> _ _  ~) lq j (t+At ~> 

O 111 i (2) 

Transformations o u t p u t  

} IW (t§ 

121 

Fig. 1 
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Possible examples are the symmetries related to the transformations of 
a system of identical particles (bosons, fermions, anyons) into itself, which 
will be the case in the toy models discussed in Section 5. It is worth 
stressing that a quantum computation mapped onto such symmetries 
would comply with the reversibility property in the sense required by 
Feynman (1986), namely a reversibility requiring machine perfection or 
zero kelvin. 

In fact, the inner symmetry properties of the state vector cannot 
change under any external perturbation; in other words, particle (or 
excitation) statistics cannot be changed. In this sense transformations of the 
system of particles into itself which does not alter the interaction and leaves 
the system phase  (in the thermodynamic meaning) unaltered (we refer to 
this as quantum s tabi l i ty)  can be considered perfect even at temperatures 
above zero kelvin. 

3. STEADY, SIMULTANEOUS COMPUTATION IN 
FINITE AUTOMATA 

We shall develop formally the model outlined in the case of finite 
automata, or Turing machines with a finite tape (Castagnoli, 1991). It is 
known that a finite automaton can be seen, without loss of generality, as an 
abstract machine which solves systems of Boolean equations. Such systems, 
incidentally, belong to the exponen t ia l  class. Furthermore, any system of 
Boolean equations can be viewed as a system of NAND equations, which 
have some Boolean variables in common. 

Figure 3a gives the truth table of the NAND equation, or gate, namely 
the set of conditional statements: /f a = 0 and b = O, then c = 1, etc. Note 
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NAND GATE 

a O C ~ b  o c  

c = f(a,b) 

INPUT OUTPUT 
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a b c 
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1 0 1 
I 1 0 

(al 

feedback loop 

it>) 

Fig.  3 

that the NAND function c =f(a, b) is not invertible; thus the input cannot 
be reconstructed from the output. 

We will work on an example, whose generalization is straightforward. 
Consider the system of Boolean equations (where f is the NAND func- 
tion): 

x3 =f(x l ,  x2), x6 =f(x4, xs), X9 =f(x7, Xs) 
(1) 

X 3 ~ X7 ,  X 6--~,X'8,  X 1 = X  2 ~  X 4 = X  5 ~ X  9 

Let us now connect together the inputs or outputs of any pair of gates 
which have some Boolean variable in common (see Fig. 3b). In a classical 
situation, this would generally "jam" the state of the network into an 
inconsistent configuration since it would in general introduce loops of 
computational feedback. Such loops require that the input of a gate must be 
consistent with a function of its same output (after some time delay). But a 
certain value of the output can admit different values of the input, given 
that the NAND function is not invertible. If the inputs are not chosen 
appropriately in the first place (but this is "exponentially improbable"), 
then inconsistency arises. According to present knowledge, the network of 
classical gates required to solve a system of n NAND equations requires a 
number of gates which is exponential in n (or time is exponential if a 
limited number of gates if reused). 

We should remark that the process performed by a classical network 
of NAND gates is irreversible, since the temporal process goes from inputs 
to outputs, and in going from inputs to outputs information is destroyed 
(no input can be reconstructed from the output). Thus there is destruction 
of information along time. But when the process of transformations be- 
tween gate inputs and outputs is atemporal, since time is separable, then a 
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network of NAND gates can give a perfectly reversible process, as no 
information is destroyed along time. In our model, any eigenstate of the 
network of Fig. 3b should be the tensor product of a simultaneous set of 
time-independent eigenkets Ixi >i multiplied by some phase factor exp{icot}. 

We shall now introduce the quantum representation of such a re- 
versible network. Any binary input or output - -or  node- -  is represented 
by a two-state "atom." For example, such states could be the two spin 
values of a fermion. This is represented formally by 

Vi: nilxi>, = xilxi>i (2) 

where n~ is the fermion number operator acting on Ket i. The generic state 
of the system of noninteracting atoms is thus given by 

1~'>= E Wxl ...... 91xl>l""lx9>9, E [wx, ...... 912=1 (3) 
Xl,...,X 9 X 1,--.,X 9 

with Xl . . . . .  x9 assuming values in the set {0, 1}. 
The tensor product sign is implied. Each tensor product appearing in 

the quantum superposition (3) is a combination of node eigenstates, i.e., of 
values of the inputs and outputs of all the gates of the network. Therefore 
such tensor products constitute a complete set of basis vectors for repre- 
senting the state of the network, of course even when the degrees of 
freedom of the network are limited by the action of the gates. Such basis 
vectors span a Hilbert space ~ .  A NAND gate, say Nl, is represented by 
equation (4), which projects oW upon the subspace oYg~ spanned by the basis 
vectors (each a combination of input output values) compatible with the 
NAND equation in question, as can be readily seen: 

where 

N l 1 r  = I~//> (4) 

NI  = E I X l > l ] X 2 > 2 1 f ( x 1 , x 2 ) > 3 < f ( x 1 , x 2 ) 1 3 < x 2 [ 2 < X l l l  
XI,X2 

Similarly, when two input or output variables coincide, say x3 = x7, 
this is represented by equation (5), which projects ~ upon Jcg3,7 spanned by 
the basis vectors compatible with the Boolean equation x3 = XT: 

U3,71~/> = J~>, U3,7 = [0>310>7<0[7(013 --~ [1)311)7(117(113 (5) 

In this way any Boolean equation is associated with an operator 
equation. The simultaneous system of such operator equations, 

N=I$> = [~b), ~ = 1 , 2 , 3  

U3,v{r = 1 r  V6,slr = [r (6) 

UI,9I~/> = U2.9[~/> = U4,91~ > ~-- U5,91~/> = I~/> 
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projects ~ upon the intersection of all the subspaces generated by the 
individual equations. Notice that the operators N . . . .  , U . . . .  are projec- 
tors. It is understood that equations (6) comprise equations (3) and (2), 
namely the definition of the generic [~) and of the eigenvalues xi. The 
intersection in question is spanned by the basis vectors compatible with all 
the equations; each of such vectors represents a combination of input- 
output values compatible with the network of NAND gates, and therefore 
a solution of the system of Boolean equations. Equations (6) define a 
quantum object in the following abstract sense [notice the analogy with 
Albert's (1983) automata]: 

I. Any state of the object is a vector of a Hilbert space. 
2. Any linear combination of such vectors represents a state of the 

object. 
3. All measurable properties of the object correspond to a set of 

commuting observables on that Hilbert space. 

All of this can be checked by noticing that equations (6) can be written in 
the form 

P !~ )=ml tp )  , where P = N 1 . N 2 . . . . . U 3 , 7 . U 6 , s - . . .  ; m = l  (7) 

The fermion number operator ni and the projector P are all diagonal 
and therefore pairwise commutative: their eigenvalues are simultaneously 
measurable. In the preparation m = 1, a set of simultaneous eigenvalues of 
n,. maps a consistent set of input-output values of the gates (a solution). 
There can be multiple solutions in quantum superposition. 

We have pointed out that the network of Figure 3b is reversible, since 
time is assumed to be a separable variable. For this reason we say not that 
the unwanted amplitudes are canceled (such a statement would imply a 
before and an after) but that they are steadily kept canceled. 

The computational model described above lends itself to a number of 
comments. 

1. It is an algebraic asequential form of computation. This may be 
better understood by means of the following consideration. We have a 
system of equations operating on the state vector, namely on a linear 
combination of basis vectors. Let us assume that quantum description is 
objective in character. By this, intuitively, we mean that the operator 
equations are objective physical bounds acting on the amplitudes of the 
basis vectors which are the relevant objective physical entities. In this 
conceptual model, the amplitudes of the basis vectors are the unknowns of 
the computational problem, which is thus solved by physically keeping to 
zero all the unwanted amplitudes. 
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2. In a computational model where the solution is obtained by keep- 
ing canceled the unwanted amplitudes, the same state can in fact be 
interpreted simultaneously as: 

(a) The object of the definition, namely the result of computation: 
since the unwanted amplitudes are canceled, the state maps the 
result of computation. 

(b) The computation: to recognize such a state as a computation, it is 
sufficient to think that all the amplitudes are entered into the 
system of simultaneous equations as the unknowns of the compu- 
tational problem, while the transformations of the state into itself 
keep the unwanted amplitudes canceled. 

(c) The definition of the object: the system of simultaneous operator 
equations, besides defining a physical state, maps exactly the 
definition of the result, namely the system of Boolean equations. 

One can say that the object (the steady state) is the definition and the 
computation of itself. The notion that a steady state is, circularly, the 
physical cause of itself appears then as natural, since it is but the applica- 
tion of the usual principle of physical (temporal) causality to steady states. 
The computational interpretation of this notion is what leads to the 
concept of circular--nondeterministic computation. 

(3) We discuss now the notion of computational feedback. Let us call 
causality the transformations of the network state into itself, established by 
the network of quantum NAND gates, namely by equations (6). In the 
limiting case of steady states the character of causality is modified, to 
become atemporal and mathematically simultaneous. The latter property has 
the conventional meaning: the transformation established, say, by the 
equation kk)=N~[~b), between the steady-state vector I~k) and itself is 
mathematically simultaneous (trivially, such a transformation does not 
involve the notion of a temporal propagator from 1O) to [0) itselfl). More 
generally, equations (6) establish a system of simultaneous transformations 
between 10) and itself. 

Such transformations can be alternatively interpreted as the mutual 
simultaneous transformations between the network input-output states 
(whose tensor product gives, in fact, the compound state 10)). Thus it is 
legitimate to interpret such (objective) simultaneous transformations as 
mutual simultaneous causation of the network input-output states. One 
can therefore state that simultaneous causality can be viewed as the 
quantum togetherness of causally compatible states. This is of course a 
strictly quantum notion, since it implies the possibility that causality, or 
computation, is circular. In fact, it is circular along the network loops 
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which comprise a gate input-output such that the input is a function of the 
output (see, e.g., Fig. 3b). 

As a consequence of simultaneous computation, the state of each node 
must be simultaneously and globally consistent with the states of all nodes, 
according to the transformations defined by the network of quantum 
NAND gates. This means just "nondeterministic computation." It trans- 
forms problems of exponential complexity in the framework of classical 
computation, which require the temporal interaction of a number of  
'~ (binary inputs or outputs) of the order of  2", into problems of 
polynomial complexity in the still abstract quantum framework, requiring 
the simultaneous interaction of n "atoms." 

One could say that nondeterministic computation is just an instance of 
quantum togetherness, more precisely of the causality togetherness inherent 
to a steady quantum structure. 

4. It is worth briefly discussing how conventional computation, 
namely the overall input-output relationship, can be mapped onto a 
network of quantum NAND gates. The nature of such a mapping is the 
following. The overall input-output pair is mapped onto a pair of subsets 
of all possible network inputs and outputs. Input values should not be 
thought of as set from an agent outside the network: the NAND function 
is a universal primitive and a simultaneous system of such primitives (part 
of the network itself) can represent any constant function, e.g., x,-= 1, 
where x~ would be an input variable. (Or a different network can be a 
superposition which maps multiple input-output pairs.) Thus the problem 
of setting the input can be included in the more general problem of 
implementing similar networks. 

5. The model of steady simultaneous computation can be extended to 
the computation of hyperarithmetical functions, a class which comprises all 
the recursive functions as well as many nonrecursive ones (Castagnoli et 
al., 1992; Castagnoli and Vincenzi, 1991). 

5. TOY MODEL HAMILTONIANS 

We shall now briefly discuss two toy model Hamiltonians, which 
exemplify the practical applicability of the paradigm of steady simulta- 
neous computation, and at the same time highlight the relationship be- 
tween steady computation and quantum symmetry. 

The first is the simplified version of the Hubbard (1963, 1964) model 
referred to as the Falikov and Kimball (1969) model, over a lattice A 
consisting of only two sites, 1 and 2, whose Hamiltonian can be written as 

J/~ = 2 QNi -- tA(A~A2 + A~A,) + C (8) 
i~A 
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with 

E i ~--- --ktA + UDi ;  C ~ - - f i b  E Di (9) 
i~A 

The variables A l are (annihilation operators) for spinless fermions--related 
to the customary annihilation operators for fermions with spin a ~ {~, ~[} at 
site i of A by A t = (1/x/~)(at, ~ + at,~)--whereas Ni ~ A~Ai. Moreover, the 
variables Di are the number operators D i = B~B~ for the spinless ferrnions 
Bi =-(1/x/2i(ai,~- ai,~). The Di are idempotent (Dr = Di, Vi~A) and central 
i.e., they commute with all dynamical variables in the system (functions 
only of the A0. In other words, they are constants of motion, unaffected by 
the dynamics, which can be thought of as classical variables (D~ = 0, 1): 
their role is to split the Hilbert space of states of the system into four 
orthogonal sectors, each corresponding to one of the possible values of the 
pair {D~, D2}. Finally, #A, #s are the chemical potentials for particles of 
type A and B respectively, tA denotes the hopping amplitude for A 
particles, and U is the effective local Coulomb interaction strength. 

The Hamiltonian g can be diagonalized--after noticing that it has a 
dynamical algebra u(1) O su( 2), as one can check by writing it in the form 

= �89 + ~ ) J  + (8~ --82)K~ - tA(K+ + K _ )  + C (10) 

where J - (N~ + N2) generates u(1) (J represents the conserved total num- 
ber of A particles), whereas K + - A ~ A 2 ,  K_-A t zA1=K~+,  K ~ -  
�89 N2) generate su(2) ([K~, K~] = +K+,  [K+, K_] = 2K~)--by a uni- 
tary transformation [a rotation in the group manifold of SU(2)] mapping 
it onto a linear combination of J and K~. The diagonal form of (8) is given 
by 

~eaiag - exp{ad Z} ( ~ )  

-- [z, [ z , . . . [ z ,  
n = 0  k ) 

n brackets 

= l (e l  + ez)J + [(el e2) 2 + 4t~]l/2K~ + C 
Z 

with 

= 8+ N~ + 8_N2 + C ( l l )  

1 2ta 
Z "- O(K+ - K _  ), 0 = - ~ t an- '  (e~ - 82----~ 

1 
g_+ = ~ {(8, + 82) _+ [(8, - 82) 2 + 4t2a] 1/2} 

(12) 
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The time evolution of  a generic initial state ]Oo ) is generated by the unitary 
operator q / - e x p ( i t ~ ) ,  

]~, > = q/]~bo > = e Z*e a,~ z(ql)eZ]~,o > (13) 

Representing the initial state over the Fock space as ]~o>= 
E-,, .2 r n2>, we find 

[~k, > = e;'C{~'Ol ]01> + r (14) 

where ~'0~ and ~'lo = ( 1 -  ~ ) ~ / 2  are proportional to the corresponding 
Cn, n~ through coefficients--functions of  the parameters tA,/IA,/~B, U, and 
{D;]i = 1, 2}--which can be made time independent by a suitable choice of  
the distribution of these latter. In this case, equation (14) manifests the 
feature that, whatever the initial state, the Hamiltonian (8) induces a 
stationary state which is a quantum superposition of pure states which are 
solutions of  the Boolean function NOT: 

[a> ] b > = f ( l a > )  

10> I1> 
I1> 10> 

(where of  course ]n,n~> =~ [a>[b>), in which the states with n, = n2, i.e., 
]00> and [11 >, are projec ted  off. A suitable preparation, or interaction from 
the outside, could allow us to keep canceled, as required, either one of  such 
two amplitudes, which is what is required for a "good" NOT gate, and 
thus lead to the possibility of  networking together a system of gates. 

The second model is defined by the abstract  Hamiltonian over a 
one-dimensional lattice ambient space with n sites and periodic boundary 
conditions: 

H = e  ~ Bi+r Z B~(,)"'B~(.)=r162 ~ B i B i + , B  i (15) 
i =  I { r c ( i ) ~ . ~ n l i  = l , . . . , n}  i = 1 

n l o d  n 

where ~ ,  denotes the set of permutations of  n objects, and 
{ E l i =  1 . . . . .  n} are the generators of  the braid group (Birman, 1982) 
algebra ~ , ,  with defining relations 

B~Bj = BjBj for [i -- j] > 2 [i3 

B t B I + I B  i = B i + l B i B i + l ,  i = 2 , . . . ,  n - 1 [ii] 

together with the constraint 

B 2 = (q - q - ' )B~ + 1, i = 1 . . . . .  n [iii] 

where q ~ ~ is an arbitrary parameter. 
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~ .  has a physically interesting realization in terms of  the customary 
fermionic creation and annihilation operators (ni = a*ia,): 

B j = ( a [ a j + l + a ~ + l a j ) - ( q n i + q - l n j + l ) + q ,  j = l  . . . . .  n (16) 

From the latter, upon defining first z~ ") - (a[ + aj), "t~ p) - - i ( a [  - aj), and 
successively performing on the {'c} ''p)} the Jordan-Wigner  transformation 

1 z} x'p) = exp i-~ Or~ ~ + 1) ~rI~'P) (17) 

where 

n factors 
A 

o'~) -D@O@ " ' @ B @  a (~) @D@-'-| ~ = x , p , O  (18) 
itla place 

the a (') are the customary Pauli matrices, defining a spin-l/2 representation 
of su(2), we are led to another realization of  ~ . ,  in terms of spins: 

Bj = l-rr"(x)"r ~j+,  -a- "J"(P)a(P)J+,:~ - (qa} ~ + q -'o-}~ ) ,)1 (19) 

The Hamiltonian H - - w h i c h  can thus be interpreted either as that of 
an interacting anyon system or of an interactingfermionic excitation system, 
or yet as the Hamiltonian of  an interacting spin sys tem--can  be diagonal- 
ized thanks to the property of being invariant under the quantum supergroup 
(Drin'feld, 1985; Manin, 1989; Woronowicz, 1987) su(ll l)q.  Denoting by A 
the coproduct operation characteristic of the latter, and defining 

T(~)- An(Z(=))=-q(n+l)/2 ~ qJ-/:~=), O~=x,p (20) 
j = l  

{generating su( lll)q by {T {~), T (=)} = 2[n]q, {T ~x), T <p)} = 0, where, as usual, 
we denote [n]q - ( q " - q - " ) / ( q  - q - ~ ) } ,  one can check that indeed 

[T(X), fir] = 0 = [T (p), I4] (21) 

We referred above to the system defined by H as anyonic just for this reason. 
We assume now n = 3. A lengthy but relatively standard calculation 

gives for the time evolved ]@,)-e;'*qq*o) of an arbitrary initial state, 
assigned--in the fermonic representat ion--as 

[~//0 ) = E Cn,,n2,n3[nln2n3> (22) 
n l , n 2 , n  3 

the form 

I~', > -- ei'~(~ooolO00> + ~o~o1010> + U, oo[lO0> + ~'~,, I111>) (23) 

where once more the coefficients{~'.,,.2.a} are proportional to the {.1,.2-3 
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th rough funct ions o f  e, ~r ~F '  (obviously  constra ined by the condi t ion of  
normal iza t ion  of  1~ )) ,  and frequency co is constant (in time) /ff ~ is an 
assigned funct ion o f  ~r There  follows that  a Hami l t on i an  o f  the fo rm 
(18) with a suitable choice o f  the control parameters m a y  induce the 
s ta t ionary  real izat ion o f  the Boolean funct ion A N D :  

la> lb> tc>=f(la>,Ib>) 
10> t0> I0> 
10> ll> 10> 
tt) 1o) Io) 
11) t l )  [1) 

~ n a n z n 3 ) ~  la ) ib ) lc ) ) .  Once m o r e  notice tha t  the ampl i tudes  
~ooo , - - - ,  ~H1 are t ime independent .  

A possible task for  fur ther  work  is o f  course  to ne twork  together  A N D  
and N O T  gates. This would  require represent ing by  suitable coherent  inter- 
act ions the equali ty between Boolean variables c o m m o n  to different gates. 
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